NNM-Club Info - Информация, Новости, События, P2P


Магнитное поле и металлические наночастицы могут построить новую печень и другие органы для трансплантации.

Клетки, растущие в 3D-биокоструктореНеумеренное потребление алкоголя, табакокурение и многие другие отрицательные факторы окружающей нас среды медленно и уверенно разрушают органы человеческого организма. Со временем некоторые органы иногда приходят в такое состояние, что спасти человека может только трансплантация нового органа. И теперь, благодаря ученым, можно буквально вырастить новый орган, используя металлические наночастицы, управляемые магнитным полем.
 | Опубликовано NanoMan | Подробнее | Комментарии: 2

Клей на основе нанотехнологий может превратить любого в человека-паука.

Человек-паукИсследователи из Университета Санта-Барбары в Калифорнии на основе нанотехнологий разработали новый вид клейкого состава, который может быть активирован и деактивирован с помощью магнетизма, своего рода выключателя липкости этого материала. Для создания этого нового клейкого состава ученые использовали знания и опыт из совершенно различных областей, включая биологию, физику, химию, нанотехнологии и машиностроение. Принцип, на основе которого создан новый состав, позаимствован у природы, его основой является двигательный аппарат геккона, который за счет микроскопических волосков на поверхности конечностей может бегать по вертикальным поверхностям и даже по потолку из любого материала, включая стекло. Наноструктуры и наночастицы на поверхности клейкого материала являются аналогом вышеупомянутых волосков геккона, управляя положение которых с помощью магнитного поля можно регулировать силу "прилипания" материала к поверхности.
 | Опубликовано NanoMan | Подробнее | Комментарии: 3

Нанотехнологии становятся безопасней. Найден фермент, полностью разрушающий углеродные нанотрубки.

Углеродная нанотрубкаНанотехнологии, благодаря современному бурному развитию этой области, все больше и больше входят в нашу жизнь. У нанотехнологий есть огромный потенциал в различных областях и, особенно, в медицинской области, в которой наночастицы и углеродные нанотрубки могут использоваться для диагностики и лечения тяжелых заболеваний, в частности раковых. Но, применяя нанотехнологии, следует соблюдать особую осторожность, углеродные нанотрубки, по своим свойствам и воздействию на человеческий организм очень напоминают волокна асбеста, который, являясь канцерогенным веществом, попадает с воздухом в легкие, накапливается в организме и приводит к возникновению нарушений функционирования мышц, тканей легких и онкологических заболеваний, к примеру, раку легких (мезотелиомы).
 | Опубликовано DrWho | Подробнее | Комментарии: 0

Использование пироэлектрических кристаллов позволит создать действительно портативный рентгеновский аппарат.

Пироэлектрические КристаллыКак и многое другое медицинское оборудование, рентгеновские аппараты являются достаточно громоздкими устройствами, требующими достаточно большого количества электроэнергии. Но, вполне естественно, что в некоторых случаях у медиков возникает потребность в использовании портативного рентгеновского аппарата для быстрой диагностики в местах стихийных бедствий и аварий, на полях сражений или просто на дому у пациента. Используя пироэлектрические кристаллы в качестве источника рентгеновского излучения, компании Radius Health удалось разработать портативный рентгеновский аппарат, умещающийся в дипломате, для функционирования которого вполне достаточно энергии, хранимой в аккумуляторной батарее от ноутбука.
 | Опубликовано DrWho | Подробнее | Комментарии: 3

Сможет ли графен полностью заменить кремний в электронике?

Искусственные дефекты в структуре графенаВ настоящее время множество научных учреждений работают над проблемой создания принципиально новых типов полупроводников. И основным претендентом на основную роль в электронной промышленности является графен - материал, представляющий собой пленку кристалла углерода толщиной всего в один атом. Но, сам графен является полупроводниковым материалом, поэтому он хорош для создания полупроводниковых элементов микрочипов, таких как диоды и транзисторы. Ученые из Университета Южной Флориды (University of South Florida, USF) разработали новую технологию изготовления графеновых пленок со специально созданными дефектами, благодаря которым в структуре пленки были сформированы каналы, способные к передаче электрического тока во всех направлениях и вследствие этого представляющие собой своеобразные нанопроводники.
 | Опубликовано NanoMan | Подробнее | Комментарии: 4

Пьезоэлектрические наногенераторы снабдят электроэнергией малогабаритную электронику за счет использования механической энергии.

Опытный образец пьезоэлектрического наногенератораУченые из Технологического института Джорджии (Georgia Institute of Technology) разработали ряд миниатюрных датчиков, приводимых в действие пьезоэлектрическими наногенераторами. Эти наногенераторы состоят из тысяч нанопроводов, которые генерируют электроэнергию каждый раз, когда они подвергаются механической деформации. Использование таких источников электроэнергии позволяет приводить в действие различные малогабаритные электронные устройства и датчики без необходимости использования батареи или аккумулятора.
 | Опубликовано Energetic | Подробнее | Комментарии: 1

Самый тонкий в мире сверхпроводник может стать основой наноэлектроники будущего.

Неметаллические сверхпроводимые нанопроводникиДальнейшее развитие электроники, которое вплотную приближается к наноуровню, станет невозможным с использованием металлических соединений, соединяющих различные компоненты микрочипов. При уменьшении размера проводника металлического соединения, согласно законам физики, его сопротивление значительно повышается. Из-за этого на таком проводнике будет выделяться в виде большое количество энергии, которое может вызвать плавление и разрушение проводника. Эту проблему могут помочь преодолеть сверхпроводимые нанопроводники, сопротивление которых чрезвычайно низко. Ученые создали самый наименьший из когда-либо создаваемых сверхпроводников в мире, который может выступать в качестве нанопроводника.
 | Опубликовано NanoMan | Подробнее | Комментарии: 5

Самовосстанавливающийся наноматериал может сделать ядерные реакторы более безопасными.

Ядерный реакторЯдерная энергетика может стать более безопасной благодаря новым исследованиям ученых, которые обнаружили явление, позволяющее материалам стенок реактора самовосстанавливаться после повреждений, нанесенных воздействием высокого уровня радиации, предотвращая, таким образом, возникновение второго Чернобыля. Это сделанное учеными из Национальной лаборатории Лос-Аламос открытие позволит разработать конструкционные материалы для ядерных реакторов следующего поколения, не подверженных разрушительному воздействию радиации.
 | Опубликовано Energetic | Подробнее | Комментарии: 4
27 марта 2010 | Нанотехнологии

Колония бактерий под управлением компьютера построила миниатюрное сооружение.

Бактерии, строящие пирамидуВ настоящее время множество ученых и исследователей ведут работы по созданию нанороботов, имеющих размеры, близкие к размерам бактерий, и способные выполнять полезную работу или действия, на которые их запрограммируют. Канадские ученые из лаборатории наноробототехники (NanoRobotics Laboratory of the Ecole Polytechnique) в Монреале нашли решение с помощью которого они смогли просто получить контроль над живыми бактериями. Используя компьютерное управление и магнитное поле ученые превратили бактерий в полностью послушных биологических нанороботов.
 | Опубликовано NanoMan | Подробнее | Комментарии: 2

Печатные метки RFID помогут устранить очереди в супермаркетах.

Печатная метка RFIDВ ближайшем времени мы все сможем, не задерживаясь возле кассы, выходить из супермаркета с полной тележкой купленных товаров. Это может стать реальным благодаря изобретению новых, печатаемых меток радиочастотной идентификации RFID, нанесенных на упаковку каждого из товаров. Клиенту супермаркета будет достаточно просто пройти рядом со специальным сканнером, который считает все метки со всех товаров, просуммирует их стоимость и спишет сумму с лицевого счета клиента.
 | Опубликовано Electronic | Подробнее | Комментарии: 7

Самособирающиеся микросхемы - новая технология производства полупроводников.

Образец полупроводника, изготовленного по новой технологииЗа прошедшие 50 лет процесс фотолитографии, используемый для производства полупроводников и микросхем, остался практически неизменным. Но для дальнейшего поддержания истинности закона Гордона Мура уже недостаточно только совершенствования существующих технологических процессов, необходимо использовать совершенно новые, инновационные технологии. Для разработки новых технологий производства полупроводников одни ученые используют принципы построения молекул ДНК, другие пытаются изготовить полупроводники из графена и углеродных нанотрубок, третьи собираются для обработки полупроводниковых материалов использовать тончайшие пучки плазмы. Вполне естественно, что исследователи из Массачуссетского технологического института (MIT) не остались в стороне, их усилиями была разработана уникальная технология, с помощью которой можно создавать полупроводниковые микросхемы, используя молекулы полимеров, которые сами автоматически располагаются и закрепляются в необходимых местах, формируя, таким образом, электрические схемы и соединения.
 | Опубликовано Electronic | Подробнее | Комментарии: 2
16 марта 2010 | Нанотехнологии

"Лес" углеродных нанотрубок и лазер - музыка, созданная с помощью нанотехнологий.

Акустическое устройство на углеродных нанотрубкахИзвестно, что углеродные нанотрубки могут использоваться для создания звуковых волн под воздействием нагревания, вызванного протекающим через них модулированным электрическим током. На основе этого эффекта даже были созданы первые экспериментальные образцы таких, "нанотрубочных", динамиков. Исследователи из Техасского университета в Далласе (University of Texas at Dallas, UT Dallas) обнаружили то, что углеродные нанотрубки, расположенные на поверхности вертикально, в виде своеобразного "леса", под воздействием модулированного лазерного света так же способны воспроизводить высококачественный звук высокой интенсивности. Это открытие является серьезным продвижением нанотехнологий в область звуковоспроизведения, позволяя создавать практически невидимые беспроводные динамики, которые могут быть расположены на любой поверхности, включая поверхности окон, стен, экранов компьютерных дисплеев, автомобильных стекол и т.п.
 | Опубликовано NanoMan | Подробнее | Комментарии: 3

Открыт новый способ производства электроэнергии с помощью углеродных нанотрубок.

Тепловая волна в углеродной нанотрубкеГруппа ученых из Массачуссетского технологического института открыла новый способ получения электроэнергии, основанный на использовании углеродных нанотрубок. Этот открытый эффект, названный "Thermopower Waves", для получения электричества использует тепловые волны, распространяющиеся по углеродным нанотрубкам. Подобно морским волнам, которые двигаясь, заставляют двигаться плавающие на поверхности предметы, тепловая волна, передвигающаяся по микроскопическому проводнику, переносит электроны, создавая, таким образом, электрический ток.
 | Опубликовано NanoMan | Подробнее | Комментарии: 3

Микровзрывы золотых наночастиц помогут уничтожить клетки раковых опухолей.

Микровзрыв, получаемый с помощью золотой наночастицыОдно из самых многообещающих применений новой, бурно развивающейся, области медицины, наномедицины, заключается в лечении рака и других онкологических заболеваний. Использование последних достижений нанотехнологий позволит медикам точно "взять на прицел" каждую отдельную клетку организма, что обеспечит более эффективную и безопасную обработку, чем обычные методы, применяемы при лечении, такие как химиотерапия, облучение ионизирующим излучением и другие. Потенциал наномедицины в этой области был снова продемонстрирован учеными из университета Райса (Rice University), которые разработали способ буквально "взорвать" каждую отдельную больную клетку, используя лазер и золотые наночастицы.
 | Опубликовано DrWho | Подробнее | Комментарии: 6
2 марта 2010 | Нанотехнологии

Открыт способ печати микромеханизмов на поверхности гибкой пленки.

Покрытие из золота, MEMSВсе чаще микроэлектромеханические устройства (Microelectromechanical devices, MEMS) используются как части для создания различных микро- и наномеханизмов. Но, в подавляющем большинстве случаев MEMS очень дороги в производстве, обладают высокой механической жесткостью, что накладывает ограничение на их применение и требуют для своего изготовления использования редких и дорогостоящих материалов. Теперь, как это зачастую бывает, в качестве неожиданного побочного эффекта от проводимого эксперимента, ученые из Массачуссетского технологического института разработали совершенно простую технологию печати золотых MEMS на подложках из гибкого пластика.
 | Опубликовано NanoMan | Подробнее | Комментарии: 2