125 атомов, контролируемых лазером и микроволновыми лучами, могут стать основой универсального квантового компьютера

Квантовые битыЭра, когда квантовые компьютеры войдут в нашу жизнь, стала еще на один шаг ближе, благодаря работе исследователей из Пенсильванского университета (Penn State University). Группа, возглавляемая профессором физики Дэвидом С. Вайсом (David S. Weiss), разработала и продемонстрировала работоспособность нового способа "упаковки" достаточно больших квантовых вычислительных мощностей в маленьком пространстве, сохранив, при этом, высокий уровень контроля над состоянием квантовых битов, кубитов. Эти кубиты расположены в виде трехмерной матрицы, а удержание их в строгом порядке, переключение и считывание квантового состояния каждого отдельного кубита, не затрагивая квантовые состояния остальных кубитов, осуществляется при помощи лазерного света и лучей микроволнового излучения. Данная технология демонстрирует возможность использования отдельных атомов в качестве "стандартных блоков" схем будущих квантовых компьютеров общего назначения.
 | Опубликовано Informatic | Подробнее | Комментарии: 1

Создана самая высокоплотная технология хранения информации, использующая отдельные атомы

Атомарная информационная матрицаС тех пор, когда в 1950-х годах в мире появились первые компьютеры общего назначения, ученые и инженеры занимались разработкой технологий компактного хранения данных, которые прошли длинный путь от гигантских магнитных барабанов до крошечных электронных чипов. А недавно ученые из Института изучения нанотехнологий (Kavli Institute of Nanoscience) Технического университета Делфта (TU Delft), Голландия, разработали новую технологию хранения информации, показатель плотности которой практически достигает своего физического предела. Ведь в этой технологии для хранения битов данных используются отдельные атомы.
 | Опубликовано Informatic | Подробнее | Комментарии: 10

Компания Google пророчит появление полноценных квантовых компьютеров, способных к самообучению, в течение следующих десяти лет

Квантовый компьютерВ настоящее время специалисты компании Google работают над созданием адиабатных (аналоговых) квантовых вычислительных систем со встроенными функциями обнаружения и коррекции ошибок. Такие квантовые компьютеры работают совершенно отличным от работы традиционных компьютеров образом, который пока еще не до конца изучен даже в теории. Но ошибки при работе адиабатных квантовых компьютеров возникают постоянно и технологии их исправления не должны оказывать никакого влияние на скорость их работы.
 | Опубликовано Informatic | Подробнее | Комментарии: 1
21 мая 2016 | Нанотехнологии

Созданы "атомарные" датчики, которые станут новым "окном" в наноразмерный мир

Структура атомарного датчикаМомент, когда исследователи компании IBM в 1981 году разработали и испытали первый сканирующий туннельный микроскоп (Scanning Tunneling Microscope, STM), позволяющий производить съемку поверхности с уровнем детализации до отдельных атомов, стал революционным моментом для многих областей науки и техники. Многие эксперты полагают, что именно это изобретение послужило толчком к началу развития абсолютно новой области - области нанотехнологий. А недавно исследователи из Калифорнийского университета в Санта-Барбаре закончили разработку микроскопа следующего поколения, который за счет использования магнетизма на уровне отдельных атомов способен получать высококачественные изображения наноразмерных объектов в широком диапазоне температуры окружающей среды. "Сердцем" этого нового микроскопа является датчик на основе единственного атома, а если быть точнее, дефекта, связанного с отсутствием в кристаллической решетке одного атома.
 | Опубликовано NanoMan | Подробнее | Комментарии: 1

Ученые впервые получили трехмерные голографические изображения сложных молекул, детализированные до уровня отдельных атомов

Голографическая съемкаИсследователи из Технологического университета Дортмунд и Института физики микроструктур Макса Планка, Германия, разработали новую технологию съемки, которая позволяет получить трехмерное голографическое изображение внутренних частей сложных молекулярных структур, детализированное до уровня отдельных атомов. До последнего времени самые широко распространенные методы съемки, включая сканирующую туннельную микроскопию, могли просматривать лишь поверхность молекул, а способность проникновения вглубь молекулярных структур и способность видеть все атомы дает людям беспрецедентные возможность в деле понимания уникальных физических и химических свойств уже известных материалов и в разработке новых материалов.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Ученым удалось измерить самые слабые силы взаимодействия между отдельными атомами

Измерение сил Ван-дер-ВаальсаГруппа ученых из швейцарского Института нанотехнологий (Swiss Nanoscience Institute) и университета Базеля (University of Basel) провели эксперимент, в ходе которого ими впервые в истории были измерены значения сил Ван-дер-Ваальса, сил, возникающих при взаимодействии отдельных атомов. Согласно полученным результатам, величина этих сил изменялась пропорционально расстоянию между атомами, но в некоторых случаях величина этих сил в несколько раз превышала ожидаемые значения, полученные при помощи теоретических расчетов.
 | Опубликовано Informatic | Подробнее | Комментарии: 0
12 мая 2016 | Нанотехнологии

Создан сверхскоростной источник света на базе одного "искусственного атома"

Квантовая точкаВсе источники света работают, абсорбируя энергию одного вида, к примеру, энергию электрического тока, и испуская фотоны света. Если задержка между моментом поглощения энергии из внешнего источника и моментом излучения фотона света достаточно велика, то часть поглощенной энергии преобразовывается в паразитное тепло. Таким образом, для создания новых высокоэффективных твердотельных лазеров, светодиодов и источников единичных фотонов для квантовых технологий требуется увеличение скорости преобразования энергии в источнике света. И исследователи из института Нильса Бора продемонстрировали, что увеличения быстродействия источника света можно добиться при помощи метода, описанного в теории в 1954 году.
 | Опубликовано NanoMan | Подробнее | Комментарии: 0

Ученые создали облако из атомов, не имеющих традиционных физических свойств

Квантовые частицыОбъекты, находящиеся в реальном физическом мире, окружающем нас с вами, обладают свойствами независимо друг от друга и вне зависимости от того, наблюдаемы мы за этими объектами или нет. Как-то Альберт Эйнштейн спросил, существует ли Луна даже тогда, когда на нее никто не смотрит? И ответ на этот вопрос весьма очевиден - да. Однако, такая очевидная уверенность является ошибочной в призрачном мире маленьких элементарных частиц, поведение которых описывается законами квантовой механики. Местоположение, скорость, магнитный момент и момент вращения частицы могут быть совершенно неопределенными, более того, эти характеристики могут проявляться только в момент их измерений или зависеть от квантового состояния других частиц.
 | Опубликовано Informatic | Подробнее | Комментарии: 9

Исследователи обнаружили абсолютно новое состояние молекул воды

Кристаллы бериллаТехнология рассеивания нейтронов и компьютерное моделирование продемонстрировали ученым неожиданное и уникальное поведение молекул воды при некоторых чрезвычайных условиях, которое не соответствует ни одному из известных состояний этого вещества, твердому, жидкому или газообразному. Ученые из Национальной лаборатории Ок-Ридж (Oak Ridge National Laboratory, ORNL) описали это термином туннельное состояние молекул воды. В такое состояние молекулы воды переходят, когда они находятся в шестигранных каналах, пролегающих внутри кристалла берилла, диаметр которых равен 5 ангстремам, Ангстрем - это десятая часть от миллиардной части метра, 1 ангстрем - это диаметр атомов некоторых химических элементов.
 | Опубликовано Informatic | Подробнее | Комментарии: 8

Ученым удалось синтезировать первые образцы карбина - самого прочного и твердого материала на сегодняшний день

Кристаллическая решетка углеродаНесколько лет назад ученые путем расчетов сложных математических моделей определили свойства экзотической формы углерода, получившей название карбин (Carbyne), и выяснили, что прочность и твердость этого материала должна превосходить аналогичные свойства всех других известных материалов, включая графен и углеродные нанотрубки. И лишь недавно ученым из Венского университета (University of Vienna), Австрия, удалось получить в своей лаборатории первые стабильные образцы этого нового материала.
 | Опубликовано Informatic | Подробнее | Комментарии: 6
6 апреля 2016 | Медицина

Ученые получили трехмерную модель вируса Zika, детализированную до атомарного уровня

Модель вируса ZikaДля того, чтобы эффективно бороться со вспышкой инфекционного заболевания, вызванного вирусом Zika, в Бразилии и в других уголках земного шара, ученым требуется лучшее понимание природы и особенностей строения этого вируса. И недавно группе ученых-вирусологов удалось составить точную трехмерную модель структуры вируса Zika, уровень детализации которой простирается до уровня отдельных молекул и атомов. Изучение вируса при помощи этой модели позволит более точно определить пути передачи вируса от одного носителя к другому и действия этого вируса, приводящие к возникновению заболевания.
 | Опубликовано DrWho | Подробнее | Комментарии: 0

Кристаллические квантовые частицы могут стать основой электроники совершенно нового типа

Кристаллический квантовый материалПодобно монокристаллическому кремнию, кардинально изменившему мир электроники более 60 лет назад, кристаллические квантовые частицы, кристаллы, изготовленные из других кристаллов, могут стать основой электроники совершенно нового типа. Исследователи из Корнуэльского университета буквально "вылепили" двухмерные суперструктуры из монокристаллических "стандартных блоков". Используя несколько химических процессов, нанокристаллы свинца-селена были объединены в большие кристаллы и соединены вместе, чтобы сформировать квадратные суперрешетки с определенной атомарной структурой.
 | Опубликовано Electronic | Подробнее | Комментарии: 3

Ученые CERN воспроизвели условия первых моментов существования Вселенной

Облако кварково-глюонной плазмыИсследователи европейской организации ядерных исследований CERN, сталкивая ядра атомов свинца, разогнанных до очень большой энергии в недрах Большого Адронного Коллайдера, воссоздали в миниатюрных масштабах условия, существовавшие во Вселенной в самый первый момент ее зарождения, спустя несколько миллиардных долей секунды после момента Большого Взрыва. Энергия столкновения была столь велика, что в месте столкновения все элементарные частицы распались и образовалась так называемая кварково-глюонная плазма, а характеристики и энергетические показатели этой плазмы были измерены с очень высокой точностью с помощью датчиков эксперимента ALICE учеными из Института Нильса Бора университета Копенгагена. Следует отметить, что данный случай является своего рода рекордом, атомы свинца были разогнаны до рекордной энергии, составившей 5.02 ТэВ (тераэлектронвольт).
 | Опубликовано Informatic | Подробнее | Комментарии: 5

Сверхкороткие импульсы света позволили измерить пределы подвижности электронов

Экспериментальная установкаНаходясь в пределах своего атома, электроны обладают весьма высокой подвижностью. Однако она, эта подвижность, ограничена некими пределами, которые, в свою очередь, служат ограничением быстродействия оптоэлектронных устройств. И недавно, группа ученых из Института квантовой оптики Макса Планка, Германия, Московского государственного университета имени Ломоносова, Россия, и Техасского университета A&M, США, произвела первые прямые измерения естественной подвижности электронов. Это было сделано при помощи чрезвычайно коротких импульсов света, а измеренное время реакции на них электронов атомов криптона составило порядка 100 аттосекунд.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Ученые добились квантовой запутанности макроскопических объектов при комнатной температуре

Экспериментальная установкаВ области квантовой физики получение квантовой запутанности частиц, более сложных, более больших и более тяжелых, нежели фотоны света, сопряжено со многими трудностями и это достигается в большинстве случаев при температурах, близких к температуре абсолютного нуля, в присутствии сильнейших магнитных полей. Однако, ученые из Чикагского университета и Национальной лаборатории Аргона успешно получили это сложное квантовое состояние при комнатной температуре. Кроме этого, квантовая запутанность была создана при помощи достаточно слабого магнитного поля между частями полупроводникового чипа, в составе которых насчитывалось большое количество атомов.
 | Опубликовано Informatic | Подробнее | Комментарии: 1