30 июня 2021 | Космос и Авиация

Рентгеновская обсерватория Чандра сделала снимок космической "руки", ударяющей в стену

Взрыв сверхновой MSH 15-52Космическая рентгеновская обсерватория Чандра впервые произвела измерения движения достаточно большой и примечательной космической структуры. Взрывная волна и обломки от взорвавшейся звезды, очень напоминающие четырехпалую руку, движутся с достаточно большой скоростью от места взрыва, пока не натыкаются на стену из окружающего это место космического газа.
 | Опубликовано Astronaut | Подробнее | Комментарии: 0

Ученые "научили" свет проходить беспрепятственно через непрозрачные материалы

Прохождение света через рассеивающий материалДаже такие "полупрозрачные" объекты, как облака или матовое стекло отбрасывают тени из-за того, что они сильно рассеивают проходящий сквозь них свет. Но недавно, ученые из Венского технологического университета и Утрехтского университета нашли новый способ, позволяющий контролировать распространение волн света так, что они становятся способными беспрепятственно проходить сквозь полупрозрачные объекты, создавая на выходе изображение с такой четкостью, словно на пути света не было никакого препятствия.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Компанией HP создан первый в своем роде лазер-мемристор

Снимок электронного микроскопаИсследователи из Hewlett Packard Labs, лаборатории, в которой был создан первый реальный мемристор, изобрели новую вариацию этого устройства - мемристорный лазер. Длина волны излучения этого лазера может быть установлена при помощи одного из доступных электронных способов, и эта длина волны сохраняется, даже если полностью отключить питание устройства. Исследователи предполагают, что созданный ими "умный" лазер может, к примеру, значительно упростить фотонные приемопередатчики, обеспечивающие передачу информации между ядрами одного процессора, также такие лазеры-мемристоры могут стать основой сверхэффективных нейроморфных фотонных схем, работающих на принципах, похожих на принципы работы головного мозга.
 | Опубликовано Electronic | Подробнее | Комментарии: 0
23 декабря 2020 | Нанотехнологии

Углеродные точки - замена квантовых точек в светоизлучающих технологиях

Углеродные точкиИсследователи из корейского Института науки и передовых технологий (Korea Advanced Institute of Science and Technology, KAIST) синтезировали "пакеты" из наночастиц, известных под названием углеродных точек, наночастиц, способных излучать свет сразу с несколькими различными длинами волн. Более того, исследователи обнаружили, что показатель дисперсии (расстояние между ближайшими углеродными точками) влияет на интенсивность и цвет излучаемого света. Это открытие, в свою очередь, позволит ученым разработать технологии управления углеродными точками и создать на их базе высококачественные дисплеи следующего поколения, осветительные приборы, датчики и т.п.
 | Опубликовано NanoMan | Подробнее | Комментарии: 0

Новая технология позволяет получить аттосекундные импульсы света при помощи обычного промышленного лазера

Длительность импульсов светаГруппа исследователей из университета Центральной Флориды разработала новый метод, позволяющий получить импульсы света, длительность которых исчисляется аттосекундами, используя на входе свет, вырабатываемый обычным лазером промышленного назначения. Данное достижение открывает возможность производить фиксацию событий и делать измерения с аттосекундной точностью, что, в свою очередь, позволит ученым из самых разных областей науки изучать сверхбыстрые явления и процессы, такие, как движение электронов в атомах или молекулах в их естественных временных рамках.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Пространственно-временные волновые пакеты: Свет нового класса лазера бросает вызов фундаментальным законам физики

Пространственно-временные волновые пакетыУченым удалось создать лазер совершенно нового класса, луч света которого не подчиняется некоторым фундаментальным законам физики и оптики. Лучи света этого лазера, которые ученые окрестили термином "пространственно-временные волновые пакеты" (spacetime wave packets), подчиняются каким-то особым правилам отражения и преломления. И эти новые правила можно будет в будущем поставить на службу людям в области коммуникационных технологий в первую очередь.
 | Опубликовано Informatic | Подробнее | Комментарии: 2

Новый солитонный лазер способен сосредоточить огромную энергию в сверхкоротких импульсах света

Солитон светаУченые из института Фотоники и оптики Сиднейского университета, Австралия, разработали лазер, основанный на совершенно новых физических принципах, за счет которых он может вырабатывать сверхкороткие импульсы света, в которых сосредоточена огромная энергия. Работа этого лазера основана на использовании так называемых биквадратных солитонов, нового физического эффекта, открытого учеными этого же института в 2016 году.
 | Опубликовано Informatic | Подробнее | Комментарии: 2

Создан источник, способный вырабатывать единичные фотоны при помощи потока единичных электронов

Источник единичных фотоновИсследователи из Кембриджского университета разработали новый метод получения единичных фотонов света путем контроля движения отдельных электронов внутри структуры специально разработанного для этих целей светодиода (light-emitting diode, LED). Этот новый метод отличается простотой, тем не менее, он способен поставлять фотоны света со стабильно повторяющимися характеристиками и параметрами, что очень важно с учетом возможности использования такого источника фотонов в областях квантовых вычислений и коммуникаций.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Установлен новый рекорд в области ускорения частиц в плазменном канале

Плазменный ускорительНе так давно ученые-физики Национальной лаборатории имени Лоуренса в Беркли установили новый мировой рекорд в области ускорения элементарных частиц. На 20 сантиметровом участке плазменного ускорителя электронные лучи были разогнаны до энергии от 0 до 7.8 миллиардов электрон-вольт (ГэВ). Отметим, что предыдущий рекорд в этой области был установлен этими же учеными, он составлял 4.2 ГэВ и был получен на ускорителе, длиной чуть более 9 сантиметров.
 | Опубликовано Informatic | Подробнее | Комментарии: 0
30 сентября 2019 | Новости науки и техники

2000 атомов в двух местах одновременно - новый рекорд в области создания состояния квантовой суперпозиции

Молекула в состоянии суперпозицииГруппа ученых из Венского университета и университета Базеля произвела проверку принципа квантовой суперпозиции в самом крупном масштабе за всю историю существования науки. Огромные сложные молекулы, состоящие из двух тысяч атомов, были помещены в состояние суперпозиции, находясь, при этом, в двух местах одновременно, согласно причудливым законам квантовой механики. Данное достижение является весомым подтверждением проявления суперпозиции, которая является "сердцем" всех квантовых технологий, что, в свою очередь, служит серьезным ограничением для дальнейшего развития множества альтернативных теорий.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Ученые воспроизвели звук с максимально возможным уровнем громкости

Создание звуковой волныГруппа исследователей из Лаборатории линейных ускорителей SLAC Стэнфордского университета создала то, что можно считать звуком с максимально возможным уровнем громкости. Для этого был использован один из самых мощных рентгеновских лазеров LCLS (Linac Coherent Light Source), луч которого был сфокусирован на тончайшей струйке воды. "Взрывное" испарение воды создало звуковую волну с невероятно высоким акустическим давлением, сила которого немного превысила отметку в 270 децибелов.
 | Опубликовано Informatic | Подробнее | Комментарии: 3

Ученые повторили один из фундаментальных физических экспериментов, используя антиматерию вместо обычной материи

Дифракционная картинаУченые-физики из Италии и Швейцарии обновили один из самых важных экспериментов за всю историю физики, но на этот раз, вместо обычной материи в этом эксперименте были использованы частицы антивещества. Несколько десятилетий назад ученые предположили, что частицы материи обладают свойством, называемым корпускулярно-волновым дуализмом. Это означает, что эти частицы в одних условиях ведут себя как физические частицы, а при других условиях - как электромагнитные волны. Эксперимент, о котором речь шла выше, заключался в прохождении частиц материи через дифракционную решетку, серию тонких параллельных щелей, и в результате этого были получены такие образы, которые соответствуют в большей мере электромагнитным волнам, а не физическим частицам.
 | Опубликовано Informatic | Подробнее | Комментарии: 5
18 сентября 2018 | Новости науки и техники

Интенсивный лазерный свет позволил ученым создать "оптическую ракету"

Экспериментальная установкаВ своих последних экспериментах ученые из университета Небраски-Линкольна (University of Nebraska-Lincoln) при помощи импульсов интенсивного лазерного света создали сгустки электронной плазмы, которые после этого были ускорены до скорости, близкой к скорости света. "Эти плазменные сгустки можно назвать термином "оптическая ракета" из-за огромного значения сил, обеспечиваемых воздействием света на плазму" - рассказывает профессор Дональд Умстадтер (Donald Umstadter), - "Электроны подверглись воздействию сил, в триллион триллионов раз больше, чем силы, которые воздействуют на астронавта во время запуска в космос".
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Ученые определили, что звуковые волны имеют отрицательную массу и являются источником отрицательной гравитации

Звуковые волныС точки зрения классической физики, известной нам еще со времен школьной скамьи, звуковые волны не являются носителем массы. Они лишь переносят импульс энергии, которая заставляет колебаться атомы или молекулы вещества, через которое они проходят. Однако, исследователи из Колумбийского университета после серии теоретических изысканий и расчетов определили, что звуковые волны, представленные в виде квазичастиц - фононов, не только имеют массу, но и производят очень слабое гравитационное поле. Более того, согласно результатам этих расчетов, фононы имеют отрицательную массу и, как следствие, вырабатывают отрицательную гравитацию.
 | Опубликовано Informatic | Подробнее | Комментарии: 2
7 июля 2018 | Нанотехнологии

Создан первый в своем роде нанолазер-хамелеон, способный изменять цвет излучаемого им света

ХамелеонХамелеоны являются весьма удивительными созданиями, за счет использования сложных наномеханизмов их кожа способна менять свой цвет в достаточно широких пределах. Группа исследователей из Северо-Западного университета, взяв за основу принципы, отшлифованные природой за миллионы лет эволюции, создала нанолазер, который, как хамелеон, способен менять цвет излучаемого им света. Данное достижение открывает путь к разработке гибких прозрачных дисплеев, миниатюрных фотоэлектрических приборов, сверхвысокочувствительных датчиков и многого другого.
 | Опубликовано NanoMan | Подробнее | Комментарии: 3