Ученые научились менять направление движения электронов, не замедляя их при этом

Свет и материяДля того, чтобы изменить направление движения такого крупного объекта, как автомобиль, его сначала необходимо замедлить до полной остановки, после чего он может начинать двигаться в обратную сторону. И даже самые маленькие носители электрического заряда - электроны, за счет наличия у них массы, также подчиняются этому закону. Но, для создания новых сверхбыстродействующих электронных устройств будет очень полезным найти метод, позволяющий игнорировать инерциальность электронов, сделав их похожими на фотоны света, которые способные моментально изменить направление движение, например, отразившись от зеркала, не потеряв при этом скорости движения. И если такой метод будет найден, это позволит осуществить практически моментальное изменение направления движения электрического тока, что, в свою очередь, позволит поднять тактовую частоту процессоров до недостижимых сегодня значений.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Создан первый в своем роде "топологический лазер", свет которого способен огибать углы и дефекты

Промышленный лазерИсследователи из университета Лидса, Великобритания, и Технологического университета Наньянга (Nanyang Technological University), Сингапур, разработали первый в своем роде "топологический лазер" фотоны света которого способны огибать углы и различные дефекты, не искажаясь и не рассеиваясь при этом. Данное достижение позволит улучшить процессы изготовления мощных промышленных лазеров, требующих экстремальных условий и высокой точности, ведь появление даже самого мельчайшего дефекта приводит к появлению технологического брака.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Ученые обнаружили экзотические "спиральные" электроны

Хиральные экситоныУченые-физики из университета Ратгерса обнаружили неизвестную ранее экзотическую форму электронов, траектория вращения которых в течение короткого времени напоминает спираль. В это время такой электрон обладает некоторыми уникальными свойствами, которые можно будет использовать в новых технологиях освещения, солнечных батареях, лазерах и устройствах отображения информации. Экзотические электроны входят в состав так называемого хирального поверхностного экситона, которые формируются на поверхности некоторых твердых материалов и представляют собой квазичастицу, состоящую из связанных друг с другом частицы и античастицы.
 | Опубликовано Informatic | Подробнее | Комментарии: 1

Найден уникальный материал-изолятор, являющийся проводником на его гранях

Топологический изолятор высшего порядкаУченые-физики из университета Цюриха обнаружили материал, относящийся к новому классу топологических изоляторов высшего порядка. Грани кристаллических твердых тел из этих материалов проводят электрический ток почти без сопротивления, в то время, как остальная часть материала остается изолятором. Такие уникальные свойства новых материалов могут оказаться очень полезными для создания новых видов электронных устройств и, безусловно, для создания квантовых вычислительных систем.
 | Опубликовано Informatic | Подробнее | Комментарии: 2

Ученым удалось создать миниатюрный ключевой компонент будущего квантового компьютера

Миниатюрный микроволновый циркуляторГруппа исследователей из Сиднейского университета, Сэнфордского университета и компании Microsoft добилась успеха в создании миниатюрного варианта одного из ключевых компонентов, используемых в технологиях квантовых вычислений. Помимо этого, данная работа является первым случаем практического применения экзотического состояния материи, которое называется топологическим изолятором. Топологические изоляторы были открыты только в 2006 году и за их открытие была присуждена Нобелевская премия по физике 2016 года.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Самая тонкая в мире голограмма может стать основой трехмерных дисплеев для смартфонов и компьютеров

Голографическое изображениеУровень развития современных голографических технологий еще очень далек от "чудес", демонстрируемых нам в различных научно-фантастических фильмах. Но сомневаться в скором или не очень скором появлении реальных голографических технологий совершенно не приходится. Момент появления этих технологий стал еще на один шаг ближе, благодаря работе исследователей из института RMIT, Австралия, и пекинского Технологического института, которые создали самый тонкий голографический дисплей на сегодняшний день, закодировав трехмерное изображение в слое гибкого и прозрачного материала, толщиной всего в 25 нанометров.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Ученым удалось вырастить первые образцы удивительного двухмерного материала - дителлурида вольфрама

Дителлурид вольфрамаГруппа ученых из Пенсильванского университета стала первой, кому удалось вырастить образцы нового уникального двухмерного материала, толщина которого равна трем атомам и который называется дителлурид вольфрама. В отличие от более изученных двухмерным материалов, дителлурид вольфрама обладает тем, что называется топологическим электронным состоянием. Это, в свою очередь, означает, что материал может обладать сразу несколькими различными электронными свойствами, а не одним, как другие материалы.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Ученые создали "энергетические" квазичастицы нового типа, называемые топологическими плекситонами

Движение плекситонаГруппа ученых из Калифорнийского университета в Сан-Диего, Массачусетского технологического института и Гарвардского университета разработали метод создания новых квазичастиц, которые получили название топологические плекситоны (topological plexcitons). Эти квазичастицы, способные переносить энергию, возникают при наличии нескольких условий и их можно использовать для создания новых видов солнечных батарей, миниатюрных электронно-оптических схем и т.п.
 | Опубликовано Informatic | Подробнее | Комментарии: 0

Ученые научились получать электрический ток без затрат энергии

Взаимодействие атомовГруппа китайских и японских ученых продемонстрировала, что в недалеком будущем может стать возможным создание нового класса электронных устройств, отличающихся крайне низким расходом энергии. Основой этих устройств станут тонкие пленки сложного материала, допированного хромом теллурида сурьмы-висмута (Cr-doped (Sb, Bi)2Te3). При чрезвычайно низкой температуре электрический ток течет по краям пленки этого материала без потерь энергии и для этого не требуется воздействия внешнего магнитного поля. Такое необычное явление происходит из-за уникальных ферромагнитных свойств материала, хотя ученым пока еще не до конца понятно, что же именно является причиной появления этих свойств у материала.
 | Опубликовано Informatic | Подробнее | Комментарии: 3

Станен - новый материал одноатомной толщины, который может потеснить графен в области электроники

Структура станенаВполне вероятно, что графену придется немного подвинуться с первого места пьедестала почета, которое он занимает в качестве самого перспективного материала для создания электронных устройств и микропроцессоров следующих поколений. А сместить оттуда графен сможет новый материал, станен (Stanene), который также является материалом одноатомной толщины, состоящим из атомов олова и атомов фтора. Согласно расчетам ученых-физиков из Стэндфордского университета и Национальной лаборатории линейных ускорителей SLAC американского Министерства энергетики (US Department of Energy, DOE), этот материал может стать первым в мире материалом, проводящим электрический ток со 100-процентной эффективностью, как при комнатной температуре, так и при более высоких температурах, при которых работают кристаллы современных микропроцессоров.
 | Опубликовано Electronic | Подробнее | Комментарии: 4

"Волшебный" скотч позволил ученым получить новый высокотемпературный сверхпроводящий материал.

СкотчСверхпроводники - это такие материалы, которые при определенных условиях обладают нулевым электрическим сопротивлением и проводят электрический ток практически без потерь. К сожалению, над проблемой создания высокотемпературных сверхпроводников, материалов, обладающих сверхпроводимостью при температурах значительно выше абсолютного нуля, ученые бьются по сей день, и не слишком успешно. Среди материалов существуют еще такие материалы, как полупроводники, которые сейчас повсеместно используются в электронике. Полупроводники проводят электрический ток значительно хуже сверхпроводников, но работают при температуре нормальных условий окружающей среды. До последнего времени ученым не получалось создать материал, который совмещает в себе свойства сверхпроводников и полупроводников, до того момента, когда кому-то не пришло в голову использовать для этого нечто вроде двухстороннего липкого скотча.
 | Опубликовано Electronic | Подробнее | Комментарии: 5