Группа ученых из университета Эксетера (University of Exeter), университета Глазго (University of Glasgow) и
компании QinetiQ разработала технологию, которая позволяет видеть сквозь кремниевые подложки и производить поиски крошечных дефектов, возникших в ходе производства кристаллов полупроводниковых чипов. В качестве доказательства работоспособности технологии ученые произвели изучение кремниевого кристалла с подложкой, толщиной 115 микрометров, а дефекты были обнаружены за счет регистрации аномалий в движении электронов в полупроводниковом материале, которое возникает под воздействием терагерцового излучения.
Токопроводящий кремний является прозрачным для терагерцового излучения, излучения, находящегося между инфракрасном и микроволновым диапазонами электромагнитного спектра, с длинами волн от 150 нанометров до 1.5 миллиметров. Просветив, словно рентгеном, терагерцовыми лучами область кристалла чипа, размерами 2 на 2 миллиметра, ученые получили достаточно точное изображение структуры кристалла, на котором было видно даже мельчайшие дефекты.
Основой нового метода терагерцовой съемки является сверхскоростной титаново-сапфировый лазер с длиной волны 800 нм, который вырабатывает импульсы, длительностью в несколько единиц и десятков фемтосекунд. Преобразование импульсов света лазера в
импульсы терагерцового излучения производится при помощи оптико-электронных компонентов, изготовленных из теллурида цинка (ZnTe). Несколько стандартных оптических приборов используются для направления и фокусировки полученных терагерцовых лучей в необходимой точке пространства, а обратное превращение лучей в электрический сигнал (
детектирование), производится при помощи компонентов, опять же изготовленных из теллурида цинка.
Высокая разрешающая способность изображений, которая получается за счет использования специальной модуляции импульсов терагерцового излучения, позволяет различить дефекты, размерами до 8 микрометров. А дальнейшее совершенствование данной технологии позволит разработать методы неразрушающего промышленного контроля, которые можно применять на производствах, занимающихся изготовлением полупроводниковой продукции.
А еще в более далекой перспективе подобные методы могут быть использованы для исследований тонких срезов биологических тканей с целью выявления симптомов некоторых заболеваний. К сожалению, для исследований толстых слоев тканей биологической природы терагерцовое излучение подходит не очень хорошо. Ведь в этих тканях содержится большое количество воды, молекулы которой эффективно поглощают электромагнитные волны терагерцового диапазона.