Топовые модели современных телевизоров и компьютерных дисплеев могут похвастаться экранами на базе квантовых точек или органических (OLED) светодиодов. Однако, в более доступных моделях все еще используются традиционные жидкокристаллические (LCD) технологии, совмещенные с поляризационными фильтрами и светодиодной подсветкой. Но эти LCD-технологии уже исчерпали все свои возможности и давно достигли технологического предела, таким образом, уже возникла необходимость в чем-то новом, которое придет им на замену.
Международная группа исследователей, возглавляемая учеными из Института физики твердого тела Токийского университета, продемонстрировала, что одна молекула фуллерена (С60) способна выполнять функцию переключателя потока электронов, подобную функции, выполняемой обычным кремниевым транзистором. Переключение пути движения потоков электронов производится при помощи импульсов лазерного света с тщательно настроенными параметрами, а сам процесс переключения происходит на целых шесть порядков величины быстрее, чем это делают транзисторы, используемые даже в самых быстрых современных процессорах.
Группа ученых из нескольких американских научных учреждений добилась успеха в создании наноструктурированных поверхностей, метаповерхностей, которые можно использовать для решения сложных математических уравнений при помощи света. Данное достижение является большим шагом в развитии области так называемых оптических аналоговых вычислений, которые смогут в будущем взвалить на свои плечи решение ресурсоемких задач со скоростью, недостижимой для традиционных вычислительных систем.
В 1991 году продвинутая компьютерная графика и визуальные эффекты позволили Джеймсу Кэмерону создать самую впечатляющую сцену фильма "Терминатор 2", когда робот-убийца Т-1000 "воскрес" из капель жидкого металла, самостоятельно стекшихся в одну большую лужу. И лишь сейчас, спустя 32 года после выхода на экраны упомянутого выше фильма, идея жидкометаллического робота, способного "переключаться" из жидкого в твердое состояние, получила первое реальное воплощение.
В настоящее время технологии трехмерной печати используются не только в строительстве, машино- и авиастроении. При их помощи также печатаются наноструктуры, столь крошечные, что их невозможно увидеть невооруженным глазом, и недавно разработанный композитный материал может обеспечить более быструю печать таких наноструктур, а сами нанотруктуры будут гораздо тверже и прочнее, чем это было возможно ранее.
В научном сообществе уже давно сложилась традиция отмечать приближение Рождества и Нового Года созданием каких-то миниатюрных чудес соответствующей тематики. Благодаря этому мы уже видели самую маленькую новогоднюю открытку, крошечную фигурку снеговика, а в прошлом году ученые из Датского технического университета (Technical University of Denmark, DTU) продемонстрировали предпраздничное настроение при помощи изготовленной из графена "самой тонкой новогодней елки". В этом же году ученые из DTU создали "самую маленькую в мире звукозапись", что-то сродни классического винилового диска, на котором выгравирована часть известной Рождественской мелодии.
Группе исследователей из Новой Зеландии и Австралии удалось вырастить крошечные металлические снежинки, кубы, стержни и объекты других форм. Эти нанокристаллы формируются из жидкого металла во время его остывания, и все это является демонстрацией огромного потенциала нового метода, позволяющего производить различные наноразмерные структуры.
Поиск новых материалов для индивидуальных средств защиты следующих поколений постоянно приводил ученых в сферу живой природы, где они черпали идеи, исследуя раковины моллюсков, строение тел морских губок и т.п. По этому самому пути пошли и исследователи из Кентского университета, которым удалось создать целую семью белковых органических материалов, способных выдерживать удары объектов, разогнанных до гиперзвуковых скоростей. Исследователи считают, что кроме самой очевидной области применения в военном деле, данные материалы также могут найти применение также и в космической технике.
В одном из исследований ученым удалось создать в недрах вакуумной камеры звездообразную решетку из отдельных атомов серебра. Но, в данном случае, высокоточным размещением атомов в узлах этой решетки занимались отнюдь не люди, исследователи использовали одну из форм искусственного интеллекта, называемую глубинным обучением с подкреплением (deep reinforcement learning), который, методом проб и ошибок, самостоятельно обучился перемещать атомы, размер каждого из которых составляет доли нанометра.
До некоторого времени ученые-физики считали, что свет невозможно сжать до величины ниже дифракционного предела. Однако, в 2006 году появилось теоретическое обоснование того, что дифракционный предел не относится к диэлектрическим материалам, но до последнего времени никто не смог это продемонстрировать в реальном мире из-за отсутствия сложных нанотехнологий, требующихся для создания соответствующих наноструктур из диэлектрических материалов.
Ученым-физикам из Городского колледжа в Нью-Йорке и Техасского университета в Остине удалось создать квазичастицу совершенно нового типа путем воздействия светом на множество крошечных, практически двумерных магнитов, размещенных в полости оптического резонатора. Данное достижение является первым практическим шагом внутрь новой и практически неизученной пока области сильного взаимодействия света с магнитными материалами, внутри которой могут таиться совершенно новые технологии записи и хранения информации, лазерные технологии и т.п.
Исследователи из университета Джонса Хопкинса разработали технологию создания микроскопических трубопроводов, толщина которых составляет одну миллионную долю от толщины человеческого волоса. Более того, они разработали метод надежного соединения этих трубопроводов, который позволяет предотвратить даже самые незначительные утечки из них. Трубопроводы строятся из самособирающихся и самовосстанавливающихся нанотрубок, которые могут быть связаны с различными органическими и биологическими структурами, что позволит в будущем создавать целые сети для транспортировки специализированных лекарственных препаратов, белков и молекул в указанные клетки человеческого тела.
На страницах нашего сайта можно найти множество информации о создании чрезвычайно маленьких роботов разных типов и предназначенных для различных видов использования. Но практически их всех объединяет одно, все они требуют внешнего управления, которое осуществляется обычно при помощи света лазера, внешнего магнитного поля и т.п. Ученым из Корнуэльского университета похоже, удалось найти решение упомянутой проблемы, созданные ими микроскопические роботы, размером порядка от 100 до 250 микрометров, имеют встроенные "электронные мозги", позволяющие им действовать более-менее самостоятельно. Кроме этого, телом этих микророботов как раз и являются кристаллы управляющих ими чипов.
Двигатели вращения, берущие свое начало от ветряных мельниц и водяных колес, всегда были показателем уровня развития человеческой цивилизации. Подтверждение этому являются турбины современных гидроэлектростанций, оффшорных ветрогенераторов, которые представляют собой сложнейшие и интеллектуальные агрегаты, снабжающие нас экологически чистой энергией. Также сейчас ученых интересуют и двигатели другого рода, микроскопические и наноразмерные, способные приводить в действие нанороботов, микромеханизмы и т.п. И в этом деле ученым также удалось добиться достаточно значительных успехов.
Группа исследователей из Мюнхенского технического университета (Technical University of Munich, TUM) разработала и изготовила первые образцы крошечных наноэлектродвигателей, состоящих из участков молекул ДНК. Эти наноустройства, созданные методом самосборки, активируются электрическим зарядом, параметры которого определяют скорость вращения ротора.