| 2 августа 2021 | Новости науки и техники

Ученым удалось превратить стеклянную наночастицу в квантовый объект, находящийся одновременно в двух разных местах

Волновая функция наночастицы


Не так давно исследователи из Венского университета и Швейцарского федерального технологического института при помощи света лазеров охладили стеклянную наночастицу до такого уровня, что она перестала быть обычным физическим объектом и превратилась в объект, подчиняющийся исключительно причудливым законам квантовой физики. В своих экспериментах ученые использовали стеклянную сферу, размер которой значительно меньше размера песчинки, но которая, при этом, состоит из нескольких миллионов атомов. В отличие от уровня микроскопического мира атомов и фотонов, стеклянная наночастица является объектом макроскопического мира, и возможность ее превращения в квантовый объект дает нам возможность использования всего этого в реальных вещах и устройствах.

"Амплитуда квантовых колебаний атомов, которые остаются после подавления тепловых колебаний путем охлаждения до сверхнизких температур, порой значительно превышает размер самого атома" - пишут исследователи, - "Однако, измеренная нами амплитуда квантовых колебаний наночастицы оказалась меньше диаметра одного атома. И для того, чтобы можно было использовать в своих интересах квантовую природу этой наночастицы, нам пришлось искусственно расширить ее волновую функцию".

Процедура расширения волновой функции квантовой наночастицы оказалась очень сложным занятием из-за того, что даже самые малые внешние воздействия разрушают квантовую природу и превращают наночастицу обратно в обычный физический объект. Однако, тщательно подобрав "потенциалы" создаваемых лазерами оптических полей, ученые добились того, что волновая функция наночастицы сначала разделяется и расширяется, а затем сжимается к первоначальному виду. А в момент расширения волновой функции наночастица, согласно всем канонам квантовой физики, находится в состоянии суперпозиции ее положения, т.е. одновременно находится в двух разных местах.

Изменяя потенциалы создаваемых оптических полей по определенным законам, ученые смогли реализовать управление квантовым состоянием стеклянной наночастицы. Оказалось, что это квантовое состояние весьма чувствительно к проявлениям внешних статических сил, что позволит использовать такие частицы в роли активных элементов сверхвысокочувствительных датчиков, измеряющих с высочайшей точностью проявление различных сил, гравитации, к примеру.

А в своих дальнейших исследованиях ученые планируют создать сразу две стеклянные наночастицы, волновая функция которых находится в постоянном расширении и сжатии, и запутать эти частицы на квантовом уровне. Это, в свою очередь, позволит ученым исследовать совершенно новые области макроскопического квантового мира, некоторые из которых в будущем можно будет использовать в практических целях.

Параллельно с этим отдельная группа ученых будет проверять значения теоретических пределов и основных принципов квантовой физики, пытаясь перевести в состояние квантовой суперпозиции макроскопические объекты больших размеров, включая объекты, состоящие из миллиардов атомов.




Ключевые слова:
Наночастица, Атом, Квантовый, Объект, Температура, Колебания, Волновая, Функция, Суперпозиция

Первоисточник

Другие новости по теме:
  • 2000 атомов в двух местах одновременно - новый рекорд в области создания со ...
  • Ученым удалось физически разделить два квантовых состояния одного иона
  • Физики обнаружили странные силы, воздействующие на наночастицы в микроскопи ...
  • Технологии лазерного охлаждения позволят раздвинуть пределы квантовой физик ...
  • Ученые попытаются поместить одну вещь в одно время в двух разных местах.




  • 3 августа 2021 20:31
    #1 Написал: volod

    Публикаций: 0
    Комментариев: 1540
    Похоже на высокотехнологичный развод с помощью фокусов с оптикой.
        

    Информация

    Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.