На страницах нашего сайта мы достаточно часто упоминали о так называемом эффекте квантового туннелирования. Этот эффект заключается в том, что электроны начинают беспрепятственно "перепрыгивать" через изолирующий промежуток, когда ширина этого промежутка становится меньше определенной величины, 3 нанометров. И именно этот эффект является на сегодняшний день главным препятствием, которое не дает сделать транзисторы еще меньшими и, следовательно, более эффективными и быстрыми.
Если вы внимательно смотрели или пересматривали фантастические фильмы из цикла "Назад в будущее /Back to the Future", то вы, наверняка, заметили, что основной движущей силой машины времени, встроенной в автомобиль DeLorean, являлся так называемый конденсатор потока (flux capacitor). И недавно исследователи из Австралии и Швейцарии создали первый такой реальный конденсатор, однако, при его помощи вряд ли получится перенестись куда-нибудь на школьный бал в 50-е годы.
Большинству инженеров и специалистов в области электроники хорошо известны имена Ли де Фореста (Lee de Forest), изобретателя первой вакуумной лампы-усилителя, или имена Джона Бардина (John Bardeen), Уолтера Браттейна (Walter Brattain) и Уильяма Шокли (William Shockley), создателей первого полупроводникового транзистора. Имена же Уильяма Эккльза (William Eccles) и Фрэнка Вильфреда Джордана (Frank Wilfred Jordan) менее известны, однако, эти двое изобретателей почти ровно 100 лет назад, в июне 1918 года, получили патент на так называемый триггер, который сейчас является одним из базовых блоков современных цифровых электронных схем. Триггер отличается от других элементов тем, что он сохраняет свое состояние сколь угодно долгое время даже после того, как с его входов снимаются управляющие сигналы. И эта особенность позволяет достаточно просто реализовать синхронизацию работы различных частей цифровых схем.
Когда человек слышит термин "искусственный интеллект", ему в голову тут же приходят термины "глубинное машинное обучение и самообучение", "нейронные сети" и мощные компьютеры с большими объемами памяти, способные быстро производить сложные расчеты, необходимые для функционирования цифровых нейронных сетей. Однако, молодая компания под названием Syntiant пытается совместить мощь систем искусственного интеллекта и малопотребляющей электроники с батарейным питанием. Специалисты этой компании уже разработали специализированные процессоры Neural Decision Processors (NDP), внутри которых заключены аналоговые нейронные сети, работающие на уровне отдельных транзисторов.
Устройства из разряда "Интернета Вещей" и масса электронных устройств других типов обладают возможностью беспроводного соединения и обмена данным. Одним из ключевых электронных компонентов, обеспечивающих такую возможность, являются высокочастотные электрические трансформаторы, которые одновременно являются одними из самых габаритных и тяжелых компонентов, устанавливаемых на электронных печатных платах. Однако, исследователям из университета Иллинойса удалось найти решение для кардинального сокращения размеров высокочастотных трансформаторов, благодаря чему и можно будет встраивать прямо в конструкцию гибридных чипов и модулей.
Паразитное тепло, выделяющееся при работе любой электроники, в большинстве случаев является немалой проблемой. Мало того, что это тепло укорачивает срок функционирования и даже может привести к выходу из строя электронных компонентов, в этом тепле заключено достаточно большое количество энергии и еще большее количество энергии теряется на обеспечение работы систем охлаждения. Но недавно, исследователи из Калифорнийского университета в Беркли разработали тонкую наноструктурированную пленку, которую можно встроить в компьютеры и другие "горячие" электронные устройства. И эта пленка способна с достаточно высокой эффективностью поглощать тепловую энергию, перерабатывая ее назад в электричество.
Устройство, получившее название StimDust, является самым маленьким, самым эффективным на сегодняшний день беспроводным электронным "искусственным нервом". По крайней мере, именно так считают разработчики этого устройства, исследователи из Калифорнийского университета в Беркли. В своей работе они использовали сверхминиатюрную и безопасную электронику, благодаря чему устройство StimDust можно отнести к классу так называемой "нервной пыли", к устройствам субмиллиметровых размеров, приводимых в действие беспроводными технологиями, которые полностью повторяют функциональность нервных тканей живых организмов. И такие устройства, как не тяжело догадаться, используются в медицине, в протезировании и в научных исследованиях.
Исследователи из американской Национальной физической лаборатории (National Physical Laboratory, NPL) создали первый в своем роде оптический диод, состоящий из света, который может быть использован в миниатюрных фотонных и фотонно-электронных схемах. Этот оптический диод, подобно его электронному аналогу, пропускает свет только в одном направлении, но его основным преимуществом являются малые габариты устройства и отсутствие необходимости использования больших мощных постоянных магнитов, которые входят в состав других видов оптических диодов.
Современные электронные и электрические устройства содержат токопроводящие материалы, по которым электроны подаются туда, где они необходимы. Эти проводники должны быть зафиксированы и изолированы от других частей устройств для того, чтобы электрический ток тек по ним только в правильном направлении. Однако, в скором времени на свет могут появиться электронные устройства совершенно нового типа, в которых, за счет использования некоторых уникальных свойств материалов, таких, как феррит висмута, будет течь необычный тип электрического тока, что, в свою очередь, позволит передавать электрические сигналы более быстро и эффективно через меньшие и более плотно упакованные электронные схемы.
Группа испанских исследователей, возглавляемая исследователями из центра CIC (nanoGUNE Cooperative Research Center), добилась существенного прогресса в области так называемой молекулярной электроники, электроники, где роль электронных компонентов выполняют отдельные молекулы различных химических соединений. Испанские ученые разработали метод, позволяющий соединить магнитные молекулы порфирина с графеновыми нанолентами, которые могут выполнять роль нанопроводников, связывающих отдельные компоненты в общую электронную схему.
Тонкопленочные оптически прозрачные материалы, являющиеся электрическими проводниками, уже достаточно широко используются в современной электронике, включая производство сенсорных дисплеев, экранов компьютеров и солнечных батарей. Невидимые участки прозрачного материала работают как проводники, являющиеся непременным атрибутом любой электронной схемы. Однако, у современных технологий, обеспечивающих прозрачность электроники, имеется один недостаток, в качестве основным материалов используются токопроводящие оксиды некоторых металлов, которые тверды и хрупки с механической точки зрения.
Исследователи из Научно-технологического университета имени короля Абдаллы (King Abdullah University of Science and Technology, KAUST), Саудовская Аравия, нашли новый способ эффективного преобразования в электрическую энергию тепла, источниками которого могут являться недра Земли, солнечный свет, и тепло, выбрасываемое в окружающую среду тепловыми станциями, фабриками и заводами. А основой технологии нового эффективного преобразования является известный и хорошо изученный эффект квантового туннелирования.
Одним из первых электронных компонентов, при помощи которого можно было управлять электрическим током, стало обычное электромагнитное реле. Через некоторое время на свет появился первый германиевый транзистор, более современные кремниевые аналоги которого работают во всех без исключения электронных устройствах. А электроника следующего поколения может быть построена на основе других материалов, в частности диоксида ванадия (VO2). Ключевой особенностью этого материала является то, что он является диэлектриком при комнатной температуре и превращается в проводник при температуре свыше 68 градусов Цельсия. И такие материалы относятся к экзотическому классу переходных металлов-диэлектриков.
Специалисты Северо-Западного университета (Northwestern University) и известной компании L'Oreal закончили разработку нового миниатюрного устройства, которое можно считать самым маленьким в мире устройством из разряда "носимой электроники" на сегодняшний день. Тончайший и легкий как перышко датчик UV Sense может быть закреплен на любом подходящем участке тела человека или одежды, а измеряет он количество ультрафиолетового излучения, воздействию которого подвергается человек, находящийся на открытом пространстве.
Две независимые группы ученых, одна - из Гарвардского университета, а вторая - из Института квантовой электроники в Цюрихе, практически одновременно закончили создание самых тонких на сегодняшний день зеркал в мире. Отражающим слоем этих зеркал является лист диселенида молибдена (MoSe2), толщина которого условно равна размеру одного атома. Такие сверхтонкие зеркала могут стать рабочими элементами крошечных датчиков, они смогут модулировать и направлять несущие информацию лучи света, когда эти лучи перемещаются в пределах кристалла компьютерного процессора.