Ученые превратили крупинки соли в крошечные электрические выключатели

Наноэлектронная схемаГруппа ученых из Ливерпульского университета, университетского Колледжа в Лондоне и университета Сарагосы, Испания, нашла новый и достаточно необычный способ управления переключением электрической проводимости на наноразмерном уровне. Крошечным электрическим выключателем является кристаллический слой соли, включая и обычную поваренную соль, толщиной в несколько атомов. Этот плоский кристалл расположен на тонком основании из чистой меди, отделенный от него слоем нитрида меди. Вся эта многослойная структура представляет собой так называемый "электрический диполь", ориентация которого может быть изменена путем приложения внешнего электрического поля.
 | Опубликовано Electronic | Подробнее | Комментарии: 0

Установлен рекорд эффективности системы охлаждения электронных чипов - 1000 Вт на квадратный сантиметр

Микроканалы системы охлажденияИсследователи из Центра нанотехнологий (Birck Nanotechnology Center) университета Пурду (Purdue University) разработали новый тип сверхэффективной системы охлаждения, предназанченной изначально для чипов радарных систем и суперкомпьютеров. В этой системе используется теплоемкий жидкий хладагент, протекающий по сетям микроканалов, толщиной в несколько микронов, специально созданных прямо в структуре чипов. И за счет этого новая система продемонстрировала рекордный на сегодняшний день показатель эффективности отвода тепла, который равен 1000 Вт на квадратный сантиметр площади охлаждаемого чипа.
 | Опубликовано NanoMan | Подробнее | Комментарии: 0

Ученые обуздали "дикие" электроны, движущиеся по графену

Управление электронамиГрафен, необычная форма углерода, кристаллическая решетка которого имеет толщину в один атом, обладает целым рядом уникальных свойств. Этот материал является одним из лучших проводников электрического тока за счет того, что "неуправляемые" электроны движутся в этом материале практически по прямой, не встречая препятствий, т.е. без электрического сопротивления. Это является одновременно и сильной и слабой стороной графена, ведь для использования материала в электронике требуются способы управления текущим через него электрическим током.
 | Опубликовано Electronic | Подробнее | Комментарии: 0
28 октября 2017 | Нанотехнологии

Графеновые наноленты - основа новых высокоточных и сверхчувствительных датчиков

Датчик с графеновыми нанолентамиГазовые датчики, в структуру которых включены графеновые наноленты особой формы, могут значительно превосходить по точности и чувствительности самые лучшие экземпляры своих "обычных" аналогов. Ученые и инженеры из университетов Небраски-Линкольна и Иллинойса, США, Саратовского государственного технического университета имени Ю.А. Гагарина, Россия, разработали специальный вид графеновой наноленты, части из которой устанавливаются вертикально на поверхности датчика вместо того, чтобы плашмя лежать на его поверхности.
 | Опубликовано NanoMan | Подробнее | Комментарии: 0
15 октября 2017 | Нанотехнологии

Аэрогель из серебряных нанопроводников - новый перспективный материал для электроники и энергетической промышленности

Аэрогель из серебряных нанопроводниковНовые технологии, повсеместно внедряемые в различных областях промышленности, все чаще и чаще основываются на новых материалах, имеющих уникальные физические, оптические и электронные свойства. К таким материалам можно отнести различные виды аэрогелей, материалы с очень малой плотностью и удельным весом, которые, как правило, состоят из "сетки" тончайших проводников, промежутки между которыми заполнены воздухом. Не так давно исследователи из Ливерморской национальной лаборатории имени Лоуренса (Lawrence Livermore National Laboratory, LLNL) американского Министерства энергетики создали образцы нового сверхлегкого аэрогеля, который состоит из сети серебряных нанопроводников. Этот материал отличается от других подобных материалов малым удельным весом, высокими механическими показателями, высокой удельной электрической и тепловой проводимостью. Все эти свойства, взятые вместе, делают материал весьма перспективным кандидатом для использования в электронике, энергетике и других областях.
 | Опубликовано NanoMan | Подробнее | Комментарии: 0
3 октября 2017 | Нанотехнологии

Ученые научились формировать из графена трехмерные объекты сложной формы

Трехмерный объект из графенаГруппа исследователей из Финляндии и Тайваня обнаружили, что графен, однослойный материал из атомов углерода, может быть превращен в трехмерные объекты только при помощи одного лазерного света. И в качестве демонстрации разработанной ими технологии была создана крошечная многоступенчатая графеновая пирамида, высотой в 60 нанометров, что всего в 200 раз больше толщины одного графенового слоя.
 | Опубликовано NanoMan | Подробнее | Комментарии: 1
30 сентября 2017 | Нанотехнологии

Наночастицы особого типа значительно расширят возможности технологий трехмерной печати металлом

Металлический порошокТехнологии трехмерной печати металлом используются в настоящее время все шире и шире буквально с каждым днем. При их помощи создаются узлы реактивных двигателей, детали автомобилей, самолетов и другой техники. Однако, потенциал технологии еще очень далек от полного раскрытия, для технологий трехмерной печати подходит лишь небольшая часть из нескольких тысяч видов металлов и сплавов, используемых сейчас в промышленности. А в большей части металлов и сплавов, подвергающихся процессу быстрого плавления при помощи света лазера и последующего быстрого охлаждения, возникают раковины, трещины и масса других дефектов.
 | Опубликовано NanoMan | Подробнее | Комментарии: 0

Ученые впервые заставили молекулы обмениваться сигналами и обрабатывать информацию

Молекулярные взаимодействияЗа последние несколько лет область так называемой молекулярной электроники существенно продвинулась вперед. Учеными были созданы функционирующие молекулярные диоды, транзисторы, ячейки памяти и молекулярные аналоги других электронных компонентов. Тем не менее, до последнего времени так и не была решена главная задача, задача передачи и обмена информацией между молекулярными устройствами при комнатной температуре. А без этого будущее всей области молекулярной электроники продолжает оставаться в подвешенном состоянии.
 | Опубликовано Electronic | Подробнее | Комментарии: 0

ДНК-нанороботы нового типа могут транспортировать и сортировать молекулы

Молекулярные ДНК-нанороботыНесмотря на массу последних достижений, можно сказать, что область нанотехнологий все еще находится на ранней стадии ее развития. Тем не менее, этот научно-фантастический мир удивительных крошечных роботов становится на шаг ближе к действительности буквально с каждым днем. Одним из таких шагов является работа исследователей из Калифорнийского технологического института (Caltech), которые создали нанороботов нового типа, состоящих из единственной цепочки молекулы ДНК, способных самостоятельно исследовать поверхности молекул, "взвалить на свои плечи" молекулы нужного типа и переместить их в заданное место.
 | Опубликовано NanoMan | Подробнее | Комментарии: 0

Ученые заставили электроны "течь" по графену подобно жидкости

Движение электронной жидкостиВ ходе своих последних экспериментов ученые из Института изучения графена Манчестерского университета обнаружили условия, при которых электроны, двигающиеся по графену, ведут себя весьма необычным способом. Такое специфическое движение электронов дает ученым лучшее понимание физических процессов в электропроводящих материалах, а в недалеком будущем эти самые процессы можно будет использовать при разработке наноэлектронных схем быстрых и высокоэффективных компьютерных чипов следующего поколения.
 | Опубликовано Informatic | Подробнее | Комментарии: 0
4 сентября 2017 | Медицина / Нанотехнологии

Созданы молекулярные наномашины, способные убивать раковые клетки

Молекулярные наномашиныГруппа исследователей из Даремского университета, Великобритания, университета Райса и университета Северной Каролины, США, разработала новый тип молекулярных машин, способных уничтожать раковые, высверливая сквозные отверстия в их клеточных мембранах. Процесс сверления производится при помощи частей молекул, вращающихся под воздействием ультрафиолетового света со скоростью 2-3 миллиона оборотов в секунду.
 | Опубликовано DrWho | Подробнее | Комментарии: 2

Ученые создали самоуправляемые "автомобили-роботы" микроскопического масштаба

Движение микромашин-роботовГруппа исследователей, возглавляемая Лонгкью Ли (Longqiu Li) из Харбинского Технологического института (Harbin Institute of Technology), Китай, работая совместно с группой Джозефа Вона (Joseph Wang) из Калифорнийского университета в Сан-Диего (University of California San Diego), США, разработала микромасштабный вариант самоуправляемых транспортных средств. 5-микрометровые сферические микродвигатели, совершая короткие перемещения, могут самостоятельно пройти сквозь микролабиринт произвольной формы и достичь точки выхода из него. Исследователи считают, что у таких "умных микроскопических транспортных средств" имеется большое будущее в области биомедицины, где они смогут выполнять задачи по целевой доставке лекарственных препаратов, по борьбе с раковыми клетками и т.п.
 | Опубликовано Transporter | Подробнее | Комментарии: 0

Созданы крошечные мембранные антенны, которые обеспечат беспроводной связью миниатюрную электронику и медицинские устройства

Мембранная антеннаСовременные компактные чип-антенны рассчитаны на работу в достаточно узком диапазоне частот. При этом, их габаритные размеры не могут быть меньше одной десятой части от длины волны резонансной частоты. Однако, группа исследователей из Северо-восточного университета разработала новый тип мембранной антенны, а габариты такой антенны могут составлять тысячную долю от длины волны их резонансной частоты, что в сто раз меньше габаритов чип-антенн, рассчитанных на работу в том же самом диапазоне. Новые мембранные антенны могут быть использованы в сверхпортативных системах беспроводной связи, включенных в состав носимой электроники, в смартфоны, медицинские имплантаты и в устройства из разряда Интернета Вещей (Internet of Things).
 | Опубликовано Electronic | Подробнее | Комментарии: 0

Создан неорганический молекулярный транзистор, способный работать при комнатной температуре

Структура молекулярного транзистораДеятельность исследователей, работающих в области так называемой молекулярной электроники, направлена на создание аналогов базовых электронных компонентов, состоящих из отдельных молекул различных химических соединений. За последние пять лет на свет появилось множество вариантов реализации диодов и транзисторов, построенных на основе молекул органических и неорганических соединений, и даже на базе отдельных атомов. К сожалению, использование органических молекул не дает необходимого уровня повторяемости результатов, другими словами, характеристики каждого органического молекулярного транзистора отличаются от характеристик другого точно такого же транзистора. Транзисторы же на основе неорганических молекул демонстрируют приблизительно одинаковые характеристики, но, к сожалению, до последнего времени такие транзисторы могли работать только будучи охлажденными до сверхнизких температур.
 | Опубликовано Electronic | Подробнее | Комментарии: 0

"Нанопроводниковые" транзисторы с фотонным управлением - новый путь к реализации технологий оптических вычислений

Нанопроводниковый транзистор с фотонным управлениемИдея замены электронов фотонами света и создание вычислительных систем, способных работать буквально со скоростью света, витает в научном сообществе уже достаточно долго. Ученые из разных стран разработали ряд фотонно-электронных компонентов, которые смогут стать в будущем основой таких систем, однако, в большинстве случаев, при работе компонентов все же требуется выполнять преобразование оптических сигналов в электрические и наоборот при помощи чисто электронных цепей. А это, в свою очередь, значительно снижает эффективность и быстродействие вычислительной системы.
 | Опубликовано Electronic | Подробнее | Комментарии: 1