Группа ученых, в которую входили Ральф Меркл (Ralph Merkle) и Роберт Фреитас (Robert Freitas), продемонстрировала, что при помощи нескольких базовых мироэлектромеханических компонентов может быть создана полноценная тьюринговая вычислительная система. Используя 2-микронную MEMS-технологию, эти исследователи создали полный микроэлектромеханический аналог 4-битного процессора Intel 4004, который появился на свет в 1971 году и стал первым микропроцессором, доступным на коммерческом рынке.
В настоящее время множество компаний и исследовательских организаций занимаются разработкой так называемой носимой электроники, пытаясь интегрировать в ткань интегральные схемы, батареи и прочие электронные компоненты. Но, что, если бы сделать саму ткань основой электронной схемы? Эта идея стала основой первого в своем роде "вышитого" компьютера "The Embroidered Computer", который является детищем исследователя Ирен Пош (Irene Posch) и художника Эбру Курбака (Ebru Kurbak). Этот полностью работоспособный 8-разрядный электромеханический компьютер впервые был продемонстрирован общественности на выставке Instanbul Design Biennial этого года.
На поверхности Меркурия в светлое время суток температура может подниматься до отметки в 430 градусов Цельсия. Приблизительно такая же температура, на уровне 462 градусов Цельсия, присутствует на поверхности Венеры, благодаря высокому давлению и плотной атмосфере этой планеты, богатой углекислым газом. И любой космический аппарат, который будет послан на эти "негостеприимные" планеты должен сохранять работоспособность при таких температурах, это касается электронных систем, научных инструментов, датчиков и источников энергии. И это является достаточно сложным делом, самому "долгоживущему" космическому аппарату, советской исследовательской станции Венера-13, опущенной на поверхность Венеры в 1982 году, удалось проработать там всего 127 минут с момента посадки.
В большинстве современных устройств, начиная от простейших электронных часов, используются специальные компоненты, называемые тактовыми генераторами, которые при подаче на них соответствующего сигнала начинают выдавать колебания со строго заданной частотой. Более сложные устройства на базе микропроцессоров нуждаются, как правило, в нескольких различных тактовых частотах, что решается путем установки нескольких независимых тактовых генераторов, основой которых является элемент под названием кварцевый резонатор. Ученые их Центра наноразмерных материалов (Center for Nanoscale Materials, CNM) Национальной лаборатории Аргона нашли способ увеличения функциональных способностей тактовых генераторов. Созданное ими микроэлектромеханическое устройство способно вырабатывать сразу несколько опорных частот, что позволит упростить схемы электронных устройств, заменив одним универсальным несколько тактовых генераторов.
Исследователи из университета Тохоку, Япония, объявили о создании первого в своем роде спинтронного микроконтроллера, который демонстрирует нам чудеса энергетической эффективности. В основе этого микроконтроллера лежит технология VLSI, работающая за счет эффектов и явлений спинтроники, за счет этого новый микроконтроллер потребляет всего 50 микроВатт мощности при работе на частоте 200 МГц, далеко обходя по этому показателю любые другие из существующих микропроцессоров и микроконтроллеров.
Группа исследователей из университета Тохоку, Япония, завершила создание первого в своем роде 128 Мб чипа памяти STT-MRAM (spin-transfer torque magnetoresistive random access memory), время записи информации которого не превышает 14 наносекунд. Это время является рекордно быстрым временем записи для различных типов встраиваемой памяти с плотность более чем 100 Мб, а сама такая память, благодаря ее определенным характеристикам, может быть использована в качестве кэш-памяти, памяти для устройств Интернета вещей и искусственного интеллекта.
Закон Гордона Мура, который мы не единожды упоминали на страницах нашего сайта, гласит, что для поддержания стабильных темпов развития вычислительных технологий количество транзисторов в компьютерных процессорах должно удваиваться каждые два года. Электронной промышленности удавалось соблюдать этот закон в течение нескольких десятилетий, но сейчас технологии уже вплотную приблизились к пределам, где вступают в силу некоторые ограничения, связанные с минимально допустимыми размерами отдельных частей электронных компонентов. Однако, инженеры из Массачусетского технологического института и Колорадского университета разработали новый технологический процесс, который позволяет изготовить "трехмерные" транзисторы, размеры которых в три раза меньше, чем размеры самых маленьких транзисторов, используемых сейчас в коммерческих продуктах.
Существует мнение, что практически все устройства из разряда Интернета Вещей (Internet of Things, IoT) следующих поколений будут сами снабжать себя требующейся для их работы энергией. Однако, тонкая "струйка" тепловой энергии, энергии света, радиоволн и даже энергии метаболизма колоний бактерий не сможет обеспечить электрический потенциал, необходимый для работы электронных транзисторов. Решением этой проблемы может быть полный отказ от использования транзисторов и замена их наноразмерными быстродействующими электромеханическими переключателями (nanoelectromechanical (NEM) relay).
Исследователи из Принстонского университета разработали и изготовили опытные образцы чипов, на кристаллах которых реализована комбинация функций хранения данных и, одновременно, вычислений с использованием этих же данных. Архитектура этого чипа называется технологией "вычислений в памяти", и это позволяет избавиться от самого узкого места в архитектуре традиционных вычислительных систем - от необходимости постоянной передачи информации из памяти в процессор и наоборот. Такие возможности нового чипа во много раз увеличивают вычислительную мощность и эффективность по сравнению с сопоставимыми системами на основе традиционной архитектуры, это же, в свою очередь, может стать огромным толчком для ускорения развития новых систем искусственного интеллекта.
Не так давно в США имел место скандал, связанный с тем, что многие крупные компании, такие как Amazon, Apple и другие, плюс некоторые военные подрядчики с 2015 года закупали вычислительную технику, в которой были использованы комплектующие компании Super Micro, произведенные в Китае. И, по имеющейся информации, во время производства в эти комплектующие были встроены аппаратные закладки, использование которых позволяло получить удаленный контроль над вычислительной системой. Естественно, что представители Amazon, Apple, Super Micro и китайское правительство отрицают данный факт, но исследования, проведенные специалистами Флоридского института проблем кибербезопасности (Florida Institute for Cybersecurity Research, FICS), указывают на то, что это все является кибератакой нового типа.
Вполне вероятно, что настанет время, когда компьютеры и другие цифровые системы будут изготовлены не из отдельных чипов, установленные на общей печатной плате, а из одного большого кремниевого чипа, на котором будут содержаться все необходимые компоненты. Исследователи компании AMD занимаются сейчас разработкой концепции так называемых "чиплетов", что, по их мнению, позволит ускорить обмен данными между компонентами компьютера и уменьшить размеры компьютеров за счет большей интеграции компонентов. А набор этих отдельных компонентов, чиплетов, будет представлен процессорами, памятью, устройствами ввода-вывода и всеми другими компонентами, необходимыми для построения даже самых сложных систем.
Специалисты компании Nippon Telephone и Токийского технологического института разработали и изготовили опытный образец быстродействующего чипа, предназначенного для организации беспроводного сверхскоростного обмена данными. Данный чип работает в терагерцовом диапазоне, и на частоте в 300 ГГц японским исследователям удалось добиться скорости передачи информации в 100 гигабит в секунду.
Специалистам японской компании Tokyo Tech удалось разработать и создать опытный образец миниатюрного, надежного и высокоскоростного приемопередатчика, работающий на частоте 28 ГГц и обеспечивающий беспроводную передачу информации по стандарту 5G. На кристалле этого чипа, размер которого равен 3 на 4 миллиметра, размещены четыре независимых приемно-передающих устройства, и для наибольшей наглядности на приведенном выше рисунке показаны детали и узлы одного из этих устройств.
В свое время мы рассказывали нашим читателям о гонке по созданию самого маленького компьютера на свете, и, наверное, наивно было бы надеяться, что пальма первенства, которую удерживала компания IBM, не переместится к новому обладателю спустя какое-то время. Недавно этим новым обладателем стал Мичиганский университет, специалисты которого изготовили компьютер, объем которого равен 0.04 кубического миллиметра, почти в десять раз меньше предыдущего компьютера-рекордсмена компании IBM. Новый компьютер настолько мал, что размещенное рядом с ним рисовое зернышко кажется просто огромным, кроме этого, этот компьютер настолько эффективен, что для его работы достаточно лишь освещение его поверхности светом светодиода.
Ученые из Австралийского Национального университета (Australian National University, ANU) разработали сверхминиатюрные оптические датчики, которые предназначены для использования в носимых медицинских устройствах. Эти устройства помогут медикам контролировать состояние человека и диагностировать заболевания в режиме реального времени, ведь, несмотря на малые габариты, новый датчик позволяет получить достаточно обширную информацию о состоянии организма человека.