| 15 декабря 2013 | Новости науки и техники

Впервые в истории науки конденсат Бозе-Эйнштейна был получен при комнатной температуре

Конденсат Бозе-Эйнштейна


Явление из области квантовой механики, известное под названием конденсата Бозе-Эйнштейна (Bose-Einstein Condensate, BEC), впервые было продемонстрировано в 1995 году. Эти эксперименты послужили доказательством того, что некоторые из квантовых явлений существуют не только на бумаге, но и в материальном мире. Естественно, что и как большинство других квантовых явлений, конденсат Бозе-Эйнштейна впервые был создан при температуре, близкой к абсолютному нулю, -273 градуса по шкале Цельсия. А недавно исследователи из научного центра Binnig and Rohrer Nano Center компании IBM оказались способны получить конденсат Бозе-Эйнштейна при комнатной температуре, используя специально разработанный для этого полимерный материал, лазер и несколько зеркал.

Специалисты компании IBM полагают, что результаты из экспериментов имеют огромный потенциал для их использования в создании ряда оптоэлектронных устройств, включая сверхскоростные оптические переключатели и высокоэффективные лазеры. Одним из практических применений высокотемпературного конденсата Бозе-Эйнштейна может стать изготовление так называемых атомарных лазеров, которые могут использоваться в процессах высокоточной литографии на уровне отдельных атомов, в научном оборудовании, позволяющем произвести измерения гравитационных полей и сил.

Вероятно, следует напомнить нашим читателям, что представляет собой конденсат Бозе-Эйнштейна? Это особое состояние материи, которое было теоретически описано в 1920-х годах Шатьендранатом Бoзе (Satyendra Nath Bose) и Альбертом Эйнштейном на основании существовавших на то время знаний об особенностях некоторых видов элементарных частиц, известных как статистика Бозе-Эйнштейна. Реальный конденсат Бозе-Эйнштейна получается тогда, когда разреженный газ, состоящий из частиц-бозонов охлаждается до самой допустимо низкой температуры. При этом все частицы газа переходят в самое низкое квантовое энергетическое состояние. Самым интересным в этом является то, что конденсат Бозе-Эйнштейна начинает действовать как один огромный атом, за счет того, что его атомы всегда имеют одинаковое квантовое состояние.

До последнего момента единственным методом получения конденсата Бозе-Эйнштейна было охлаждение облака частиц-бозонов до сверхнизких температур. Но, поместив полимерную пленку, толщиной 35 нанометров между двумя зеркалами и осветить получившуюся структуру светом лазера с определенными характеристиками, ученым IBM удалось создать конденсат Бозе-Эйнштейна при комнатной температуре. При этом, частицы-бозоны конденсата получаются за счет света, который проходит сквозь полимерную пленку и колеблется в ее пределах, много раз отражаясь от зеркал.

В данном случае состояние конденсата Бозе-Эйнштейна существует только в течение пикосекунд времени, но исследователи полагают, что конденсат уже существует достаточно долго для того, чтобы создать подобный лазеру источник света и оптический переключатель, которые могут стать основой будущих квантово-оптических коммуникационных систем.

После того, как исследователям удалось получить устойчивый эффект, приводящий к формированию конденсата Бозе-Эйнштейна, они собираются произвести дальнейшие исследования, направленные на получение контроля над квантовым состоянием суператома конденсата. Когда им удастся достичь этого в достаточной мере, такая квантовая система может быть использована во многих областях. О некоторых из этих областей мы упоминали выше, а еще одной важной областью является исследования в направлении реализации еще одного квантового явления - явления высокотемпературной сверхпроводимости.



Ключевые слова:
Конденсат, Бозе, Эйнштейн, Атом, Частица, Газ, Квантовое, Состояние, Энергия, Свет, Лазер, Зеркало, Полимер, Температура, IBM

Первоисточник

Другие новости по теме:
  • Квантовый термометр сможет измерить самую низкую температуру во Вселенной
  • Ученые впервые "сплели узлы" из сверхохлажденного квантового газа
  • На борту космической станции будет создано самое холодное место во Вселенной
  • Физики получили "невозможную" форму материи - сверхтвердую кристаллическую супержидкость
  • Первая реализация спинового эффекта Холла является шагом к дальнейшему развитию спинтроники и атомотроники




  • 18 декабря 2013 05:37
    #1 Написал: radix

    Публикаций: 0
    Комментариев: 0
    Ну что, бахнем конденсатику... За науку!
        

    Информация

    Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.