В течение многих лет ученые-химики занимаются поисками катализатора, способствующего реакции преобразования атмосферного углекислого газа в метан, который является сам по себе одним из основных видов топлива и сырьем для производства топлива других видов. И недавно ученые из университета Дюка (Duke University) нашли еще один высокоэффективный катализатор, крошечные наночастицы, изготовленные из родия, которые способствуют упомянутому выше химическому преобразованию под воздействием ультрафиолетового света.
Хранение энергии при помощи воды, накачиваемой в резервуар, расположенный выше турбины электрического генератора, является достаточно простым способом аккумулирования энергии, используемым уже в течение нескольких десятилетий. Вода в резервуар накачивается во время минимального энергопотребления или в момент самой низкой стоимости электроэнергии, а возвращается она в энергетическую систему в часы пикового потребления. И даже с учетом низкой эффективности двойного преобразования энергии, использование таких технологий аккумулирования экономически оправдано в некоторых случаях.
Полиэтиленовая пленка и другой всевозможный мусор, опутавший провода высоковольтных линий электропередач, может послужить причиной возникновения значительных токов утечки и даже электрического разряда особенно в сырую дождливую погоду. Поэтому линии электропередач нуждаются в периодической очистке, что особо актуально в районах больших городов. Традиционно это делается обученными людьми, поднятыми к проводам на специальных изолированных площадках и вооруженными длинными штангами из изоляционного материала. А в особых случаях очищаемые лини отключают полностью, что приносит людям неудобства, а энергетическим компаниям - убытки.
В настоящее время доля электрической энергии, получаемой из возобновляемых источников, таких, как энергия солнечных лучей и энергия ветра, увеличивается буквально с каждым днем. Однако, в отличие от традиционных источников, альтернативные источники энергии не отличаются постоянством, количество отдаваемой ими энергии зависит от времени года, метеорологических условий и даже от времени суток. Именно поэтому альтернативные энергетические системы нуждаются в промежуточных устройствах хранения энергии, которые накапливают ее избытки в моменты максимальной мощности работы электростанций и отдают ее потребителям в часы пикового потребления.
Исследователи из Пенсильванского университета (Penn State University) разработали способ, которым можно получать энергию, используя углекислый газ, выбрасываемый в земную атмосферу миллионами тонн ежегодно. В новой проточной батарее используются водные растворы определенных веществ, которые способствуют процессу поглощения атмосферного углекислого газа. За счет этого у двух разделенных потоков жидкости имеются различные концентрации растворенного в них углекислого газа, и, как следствие, разные значения pH-фактора. И как раз эта разница используется для получения электрической энергии.
Новая технология, разработанная сотрудниками подразделения Disney Research, позволяет передавать энергию беспроводным способом, охватывая объем достаточно большого помещения. Это, в свою очередь, позволит запитывать и подзаряжать батареи электронных устройств так же просто, как и подключать их к беспроводным сетям Wi-Fi, что избавляет людей от необходимости использования электрических проводов и зарядных устройств.
МВТ V164-8.0, ветряной генератор, высотой 220 метров и оснащенный 35-тонными лопастями, недавно установил новый абсолютный мировой рекорд, выработав 216 тысяч кВт*ч электроэнергии на протяжении 24 часов. Для сравнения, такого количества энергии достаточно для снабжения электроэнергией среднестатиситческого дома на протяжении двадцати лет.
Ветряные генераторы, кажется, уже давным-давно приобрели свой традиционный вид, который считается самой оптимальной конструкцией. Однако у инженеров, работающих в данной области, есть множество новых идей, некоторые из которых способны удивить нас достаточно сильно. К такой идее можно смело отнести новый ветрогенератор, созданный компанией Tyer Wind из Туниса. Этот генератор, вместо совершения вращательных движений, машет своими "крыльями", подражая движениям крыльев птички колибри. А его достаточно компактная конструкция идеально подходит для организации снабжения электрической энергией даже небольших жилых домов.
В этом месяце в Объединенных Арабских Эмиратах близ Дубаи начнутся работы по сооружению самой большой в мире солнечной электростанции на базе фотогальванических элементов. Проект по созданию электростанции имени Мохаммеда бин Рашида Аль Мактума (Mohammed bin Rashid Al Maktoum Solar Park) перешел на третью фазу его реализации, фазу строительства первой очереди. И после завершения этого этапа электростанция добавит свои 800 МВт в общую энергосистему страны, сократив количество выбросов углекислого газа в атмосферу на 6.5 миллионов метрических тонн ежегодно.
Стремление уйти от использования ископаемых видов топлива при отоплении жилых и производственных помещений является частью глобального плана по обеспечению более экологически чистого будущего человечества. Но, в настоящее время только своевременный поворот регулятора термостата на газовом котле или электрическом нагревателе может обеспечить практически мгновенную реакцию на изменение температуры окружающей среды. Однако группа исследователей из Швейцарии разработала технологию, позволяющую использовать экологически чистую тепловую энергию для отопления, а применение этой технологии позволит аккумулировать тепло в течение лета и использовать его зимой по мере необходимости, увеличивая или уменьшая теплоотдачу системы простым "щелчком выключателя". Помимо этого, агент, хранящий в себе энергию, может быть без труда перемещен туда, где в данный момент времени есть необходимость в источнике тепловой энергии.
Три года назад правительство Израиля объявило о своих планах касательно строительства новой огромной гелиотермальной электростанции. И сейчас этот проект, который является крупнейшим израильским проектом в области использования возобновляемых источников энергии, уже находится на конечной стадии его реализации. Гелиотермальная электростанция Ashalim Solar Thermal Power Station, мощностью в 121 МВт, находится в самом солнечном уголке Израиля, в пустыне Негев, а в центре этой станции установлена самая высокая в мире на сегодняшний день концентрационная башня, высота которой равна 250 метрам (820 футов).
В не очень далеком будущем владельцы электрических автомобилей смогут избавиться от необходимости подключения своих транспортных средств к порту зарядной станции и от простоя в течение времени, необходимого для зарядки аккумуляторных батарей. Подзарядка батарей будет производиться беспроводным способом прямо во время движения по специальной электрифицированной дороге. И первая такая дорога появится в ближайшее время в Тель-Авиве благодаря работе специалистов израильской компании Electroad. На первом этапе будет электрифицироваться участок дороги, по которому курсируют автобусы одного из маршрутов. А после опытной эксплуатации такой дороги технология беспроводной зарядки электрического транспорта доберется и до других дорог общего назначения.
Исследователи из университета Бингемтона (Binghamton University) и Государственного университета Нью-Йорка (State University of New York) создали батарею, способную приводить в действие малопотребляющие портативные электронные устройства и датчики. Самым интересным является то, что в основе этой батареи лежит лист обычной бумаги, а ее "движущей силой" являются колонии специализированных бактерий. Данная технология способна уменьшить время и стоимость производства биобатарей, которые могут выступать в качестве источников энергии, длительное время снабжающих энергией электронные устройства, функционирующие в удаленных и труднодоступных местах.
Большое количество групп ученых из разных стран, используя тяжелый и затратный метод проб и ошибок, провели множество лет в поисках более безопасной альтернативы жидким электролитам, используемым в современных литий-ионных аккумуляторных батареях. И недавно исследователи из Стэнфордского университета сузили круг этих поисков наиболее подходящего состава твердого электролита с нескольких десятков тысяч всего до двух десятков. И помогла им в этом система искусственного интеллекта, прошедшая через процесс предварительного обучения и последующего самообучения.
Ученые-физики из Московского физико-технического института (МФТИ) и Объединенного института высоких температур российской Академии наук (ОИВТ РАН) разработали математическую модель, которая описывает подвижность линейных дефектов в диоксиде урана. Это, в свою очередь, позволит предсказать поведение ядерного топлива в реакторах при различных эксплуатационных режимах. А в настоящее время российские ученые заняты поиском международных партнеров, которые вместе с ними будут использовать результаты данной работы в области ядерной энергетики.